P P SAVANI UNIVERSITY

Third Semester of B. Tech. Examination December 2022

SH2031 Differential Methods for Chemical Engineers

22 44 22	SESH2031 Differential Methods for Chemical Engineers				
23.11.2022, Wednesday Time: 10:00 a.m. To 12:30 p.m.			Maximum Marks: 60		
 Section Make s 	nestion paper comprises of two sections. I and II must be attempted in separate answer sheets. Suitable assumptions and draw neat figures wherever required. scientific calculator is allowed.		511		
	SECTION - I				
Q-1	Choose correct answer for any two:	[05]	CO	BTL	
(i)	Degree of the differential equation $y = z \frac{dy}{dx} + \frac{x}{\frac{dy}{dx}}$ is		1	3	
(;;)	a. 1 b. 2 c. 3 d. 4				
(ii)	The root of the PDE $(2D^2 + 5DD' + 2D^2)z = 0$ is a. $(2, -\frac{1}{2})$ b. $(-2, \frac{1}{2})$ c. $(2, \frac{1}{2})$ d. $(-2, -\frac{1}{2})$		2	5	
(iii)	The two functions $\sin 2x$ and $\cos 2x$ are solutions. a. independent b. dependent c. linear d. non-linear		1	4	
Q-2(a)		[05]	1	3/5	
Q-2(b)	Solve $\frac{y^2z}{x}p + xzq = y^2$.	[05]	2	3/5	
Q-2(a)		[05]	1	3/5	
Q-2 (b)	Solve $x^2(y-z)p + y^2(z-x)q = z^2(x-y)$.	[05]	2	3/5	
Q-3	Find the Laplace transform of $\frac{1-e^{-t}}{t}$.	[05]	3	4	
Q-3	OR Solve $(D^3 - 3D^2D' + 4D'^3)z = e^{x+2y}$.				
Q-4	Solve $(D^2 - 3D^2D + 4D^3)z = e^{x^2/2}$. Attempt any one:	[05]	2	3/5	
(i)	Solve $\frac{d^2y}{dx^2} + \frac{dy}{dx} - 12y = e^{6x}$.	[10]			
			1	3/5	
(ii)	Find the Laplace transform of $e^{-3t}(2\cos 5t - 3\sin 5t)$. SECTION - II		3	4	
Q-1 (i)	Choose correct answer for any two: Z -transform of the 2^n is	[05]			
	a. $\frac{1}{z+2}$ b. $\frac{z}{z+2}$ c. $\frac{1}{z-2}$ d. $\frac{z}{z-2}$		3	3	
(ii)	Which of the following is not periodic functions? a. x b. e^x c. $\ln x$ d. All		4	1/2	
(iii)	Which of the following is odd function. a. $\cos x$ b. $\tan x$ c. x^2 d. None		4	1/2	
Q-2(a)	Find the Z-transform of $(n+1)^2$.	[05]	3	4	
Q-2 (b)	Find the Fourier series of $f(x) = e^{-x}$ in the interval $0 < x < 2\pi$. OR	[05]	4	5	
Q-2(a)	Find the inverse Z-transform of $\frac{7z-11z^2}{(z-1)(z-2)(z+3)}$.	[05]	3	3/5	
Q-2(b)	Find the Fourier series of $f(x) = \begin{cases} \pi x & 0 \le x \le 1 \\ \pi(2-x) & 1 \le x \le 2 \end{cases}$	[05]	4	3/5	

Page 1 of 2

Express the function
$$f(x) = \begin{cases} 1 & 0 \le x < \pi \\ 0 & x > \pi \end{cases}$$
 as a Fourier sine integral and hence, [05] 4 5/6 evaluate $\int_0^\infty \frac{1-\cos \pi \omega}{\omega} \sin \omega \, x d\omega$.

OR

Q-3 Find the Fourier series solution to the differential equation $y'' + 2y = 3x$ with [05] 4 3/4 the boundary conditions $y(0) = y(1) = 0$.

Q-4 Attempt any one: [10]

(i) Using the Z-transform, solve $y_{n+2} + 6y_{n+1} + 9y_n = 2^n$ with $y_0 = y_1 = 0$.

3 3/5

(ii) Using Fourier integral representation, show that
$$\int_0^\infty \frac{\cos \omega \, x + \omega \sin \omega \, x}{1 + \omega^2} \, d\omega = \begin{cases} \frac{0}{\pi} & x < 0 \\ \frac{\pi}{2} & x = 0 \\ \pi e^{-x} & x > 0 \end{cases}$$

CO : Course Outcome Number

BTL : Blooms Taxonomy Level

Level of Bloom's Revised Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create